计算化学公社

标题: Dalton计算旋轨耦合矩阵元得到的X,Y,Z三个方向的跃迁偶极矩的单位如何换算成cm-1? [打印本页]

作者
Author:
catenarygong    时间: 2018-12-17 20:47
标题: Dalton计算旋轨耦合矩阵元得到的X,Y,Z三个方向的跃迁偶极矩的单位如何换算成cm-1?
输入文件如下:
  1. **DALTON INPUT
  2. .RUN RESPONS
  3. **WAVE FUNCTIONS
  4. .DFT
  5. B3LYP
  6. **INTEGRALS
  7. .MNF-SO
  8. **SCF INPUT
  9. .DOUBLY OCCUPIED
  10. **RESPONS
  11. *QUADRATIC
  12. .DOUBLE RESIDUE
  13. .ISPABC
  14. 1 0 1
  15. .PROPRT
  16. X1MNF-SO
  17. .PROPRT
  18. Y1MNF-SO
  19. .PROPRT
  20. Z1MNF-SO
  21. .ROOTS
  22. 3
  23. **END OF DALTON INPUT
复制代码
输出文件有关SOC的地方如下:
  1. @ Transition moment <B | A - <A> | C> in a.u. for
  2. @ A operator label,    symmetry, spin:      X1MNF-SO    1    1
  3. @ B excited state no., symmetry, spin:             1    1    0
  4. @ C excited state no., symmetry, spin:             1    1    1

  5. @ B and C excitation energies, moment:   0.01880548   0.01041747  -0.00003987


  6. @ Transition moment <B | A - <A> | C> in a.u. for
  7. @ A operator label,    symmetry, spin:      Y1MNF-SO    1    1
  8. @ B excited state no., symmetry, spin:             1    1    0
  9. @ C excited state no., symmetry, spin:             1    1    1

  10. @ B and C excitation energies, moment:   0.01880548   0.01041747  -0.00002613


  11. @ Transition moment <B | A - <A> | C> in a.u. for
  12. @ A operator label,    symmetry, spin:      Z1MNF-SO    1    1
  13. @ B excited state no., symmetry, spin:             1    1    0
  14. @ C excited state no., symmetry, spin:             1    1    1

  15. @ B and C excitation energies, moment:   0.01880548   0.01041747   0.00011714


  16. @ Transition moment <B | A - <A> | C> in a.u. for
  17. @ A operator label,    symmetry, spin:      X1MNF-SO    1    1
  18. @ B excited state no., symmetry, spin:             2    1    0
  19. @ C excited state no., symmetry, spin:             1    1    1

  20. @ B and C excitation energies, moment:   0.03088657   0.01041747   0.00003424


  21. @ Transition moment <B | A - <A> | C> in a.u. for
  22. @ A operator label,    symmetry, spin:      Y1MNF-SO    1    1
  23. @ B excited state no., symmetry, spin:             2    1    0
  24. @ C excited state no., symmetry, spin:             1    1    1

  25. @ B and C excitation energies, moment:   0.03088657   0.01041747  -0.00003202


  26. @ Transition moment <B | A - <A> | C> in a.u. for
  27. @ A operator label,    symmetry, spin:      Z1MNF-SO    1    1
  28. @ B excited state no., symmetry, spin:             2    1    0
  29. @ C excited state no., symmetry, spin:             1    1    1

  30. @ B and C excitation energies, moment:   0.03088657   0.01041747   0.00008007


  31. @ Transition moment <B | A - <A> | C> in a.u. for
  32. @ A operator label,    symmetry, spin:      X1MNF-SO    1    1
  33. @ B excited state no., symmetry, spin:             3    1    0
  34. @ C excited state no., symmetry, spin:             1    1    1

  35. @ B and C excitation energies, moment:   0.04062704   0.01041747  -0.00078376


  36. @ Transition moment <B | A - <A> | C> in a.u. for
  37. @ A operator label,    symmetry, spin:      Y1MNF-SO    1    1
  38. @ B excited state no., symmetry, spin:             3    1    0
  39. @ C excited state no., symmetry, spin:             1    1    1

  40. @ B and C excitation energies, moment:   0.04062704   0.01041747   0.00019726


  41. @ Transition moment <B | A - <A> | C> in a.u. for
  42. @ A operator label,    symmetry, spin:      Z1MNF-SO    1    1
  43. @ B excited state no., symmetry, spin:             3    1    0
  44. @ C excited state no., symmetry, spin:             1    1    1

  45. @ B and C excitation energies, moment:   0.04062704   0.01041747  -0.00084584


  46. @ Transition moment <B | A - <A> | C> in a.u. for
  47. @ A operator label,    symmetry, spin:      X1MNF-SO    1    1
  48. @ B excited state no., symmetry, spin:             1    1    0
  49. @ C excited state no., symmetry, spin:             2    1    1

  50. @ B and C excitation energies, moment:   0.01880548   0.01714880   0.00000259


  51. @ Transition moment <B | A - <A> | C> in a.u. for
  52. @ A operator label,    symmetry, spin:      Y1MNF-SO    1    1
  53. @ B excited state no., symmetry, spin:             1    1    0
  54. @ C excited state no., symmetry, spin:             2    1    1

  55. @ B and C excitation energies, moment:   0.01880548   0.01714880  -0.00000077


  56. @ Transition moment <B | A - <A> | C> in a.u. for
  57. @ A operator label,    symmetry, spin:      Z1MNF-SO    1    1
  58. @ B excited state no., symmetry, spin:             1    1    0
  59. @ C excited state no., symmetry, spin:             2    1    1

  60. @ B and C excitation energies, moment:   0.01880548   0.01714880  -0.00001531


  61. @ Transition moment <B | A - <A> | C> in a.u. for
  62. @ A operator label,    symmetry, spin:      X1MNF-SO    1    1
  63. @ B excited state no., symmetry, spin:             2    1    0
  64. @ C excited state no., symmetry, spin:             2    1    1

  65. @ B and C excitation energies, moment:   0.03088657   0.01714880  -0.00031241


  66. @ Transition moment <B | A - <A> | C> in a.u. for
  67. @ A operator label,    symmetry, spin:      Y1MNF-SO    1    1
  68. @ B excited state no., symmetry, spin:             2    1    0
  69. @ C excited state no., symmetry, spin:             2    1    1

  70. @ B and C excitation energies, moment:   0.03088657   0.01714880   0.00031985


  71. @ Transition moment <B | A - <A> | C> in a.u. for
  72. @ A operator label,    symmetry, spin:      Z1MNF-SO    1    1
  73. @ B excited state no., symmetry, spin:             2    1    0
  74. @ C excited state no., symmetry, spin:             2    1    1

  75. @ B and C excitation energies, moment:   0.03088657   0.01714880  -0.00068080


  76. @ Transition moment <B | A - <A> | C> in a.u. for
  77. @ A operator label,    symmetry, spin:      X1MNF-SO    1    1
  78. @ B excited state no., symmetry, spin:             3    1    0
  79. @ C excited state no., symmetry, spin:             2    1    1

  80. @ B and C excitation energies, moment:   0.04062704   0.01714880  -0.00000260


  81. @ Transition moment <B | A - <A> | C> in a.u. for
  82. @ A operator label,    symmetry, spin:      Y1MNF-SO    1    1
  83. @ B excited state no., symmetry, spin:             3    1    0
  84. @ C excited state no., symmetry, spin:             2    1    1

  85. @ B and C excitation energies, moment:   0.04062704   0.01714880  -0.00000349


  86. @ Transition moment <B | A - <A> | C> in a.u. for
  87. @ A operator label,    symmetry, spin:      Z1MNF-SO    1    1
  88. @ B excited state no., symmetry, spin:             3    1    0
  89. @ C excited state no., symmetry, spin:             2    1    1

  90. @ B and C excitation energies, moment:   0.04062704   0.01714880  -0.00002406


  91. @ Transition moment <B | A - <A> | C> in a.u. for
  92. @ A operator label,    symmetry, spin:      X1MNF-SO    1    1
  93. @ B excited state no., symmetry, spin:             1    1    0
  94. @ C excited state no., symmetry, spin:             3    1    1

  95. @ B and C excitation energies, moment:   0.01880548   0.03054659   0.00002935


  96. @ Transition moment <B | A - <A> | C> in a.u. for
  97. @ A operator label,    symmetry, spin:      Y1MNF-SO    1    1
  98. @ B excited state no., symmetry, spin:             1    1    0
  99. @ C excited state no., symmetry, spin:             3    1    1

  100. @ B and C excitation energies, moment:   0.01880548   0.03054659   0.00003380


  101. @ Transition moment <B | A - <A> | C> in a.u. for
  102. @ A operator label,    symmetry, spin:      Z1MNF-SO    1    1
  103. @ B excited state no., symmetry, spin:             1    1    0
  104. @ C excited state no., symmetry, spin:             3    1    1

  105. @ B and C excitation energies, moment:   0.01880548   0.03054659   0.00002814


  106. @ Transition moment <B | A - <A> | C> in a.u. for
  107. @ A operator label,    symmetry, spin:      X1MNF-SO    1    1
  108. @ B excited state no., symmetry, spin:             2    1    0
  109. @ C excited state no., symmetry, spin:             3    1    1

  110. @ B and C excitation energies, moment:   0.03088657   0.03054659  -0.00000965


  111. @ Transition moment <B | A - <A> | C> in a.u. for
  112. @ A operator label,    symmetry, spin:      Y1MNF-SO    1    1
  113. @ B excited state no., symmetry, spin:             2    1    0
  114. @ C excited state no., symmetry, spin:             3    1    1

  115. @ B and C excitation energies, moment:   0.03088657   0.03054659   0.00000406


  116. @ Transition moment <B | A - <A> | C> in a.u. for
  117. @ A operator label,    symmetry, spin:      Z1MNF-SO    1    1
  118. @ B excited state no., symmetry, spin:             2    1    0
  119. @ C excited state no., symmetry, spin:             3    1    1

  120. @ B and C excitation energies, moment:   0.03088657   0.03054659  -0.00001460


  121. @ Transition moment <B | A - <A> | C> in a.u. for
  122. @ A operator label,    symmetry, spin:      X1MNF-SO    1    1
  123. @ B excited state no., symmetry, spin:             3    1    0
  124. @ C excited state no., symmetry, spin:             3    1    1

  125. @ B and C excitation energies, moment:   0.04062704   0.03054659   0.00023718


  126. @ Transition moment <B | A - <A> | C> in a.u. for
  127. @ A operator label,    symmetry, spin:      Y1MNF-SO    1    1
  128. @ B excited state no., symmetry, spin:             3    1    0
  129. @ C excited state no., symmetry, spin:             3    1    1

  130. @ B and C excitation energies, moment:   0.04062704   0.03054659   0.00017156


  131. @ Transition moment <B | A - <A> | C> in a.u. for
  132. @ A operator label,    symmetry, spin:      Z1MNF-SO    1    1
  133. @ B excited state no., symmetry, spin:             3    1    0
  134. @ C excited state no., symmetry, spin:             3    1    1

  135. @ B and C excitation energies, moment:   0.04062704   0.03054659  -0.00076484
复制代码

抱歉问如此低级的问题
最近才开始初学这部分的计算
一直认为跃迁偶极矩的单位是a.u.到debye这样的转换,但是很多文献里给的<Sn|HSO|Tn>的单位是cm-1....
我尝试用Hartree到wavenumber这样的转换,但是感觉不太对

作者
Author:
abin    时间: 2018-12-17 23:33
@ Transition moment <B | A - <A> | C> in a.u. for
@ A operator label,    symmetry, spin:      Y1MNF-SO    1    1
@ B excited state no., symmetry, spin:             3    1    0
@ C excited state no., symmetry, spin:             1    1    1

@ B and C excitation energies, moment:   0.04062704   0.01041747   0.00019726
这里大概说,
S3 energy = 0.04062704 au
T1 energy = 0.01041747
使用MNF-SO方案,Y方向, 考虑single electron SO情形下,得到的SOCME大概是0.00019726 au = 43.293565514 cm^-1.
同理可以得到其他方向的分量。

然后使用下面的方式求解:
<S3 | SOC | T1 > = sqrt(x **2 + y ** 2 + z ** 2)

如果计算得到的数据很离谱,那么请仔细阅读Dalton手册(你可能使用错了基组)。

作者
Author:
小范范1989    时间: 2018-12-18 08:24
abin 发表于 2018-12-17 23:33
@ Transition moment  in a.u. for
@ A operator label,    symmetry, spin:      Y1MNF-SO    1    1
@  ...

你好,请问一下,基组对SOC的计算也有影响?
比如说6-31g*和3-21g*计算出来的差距会很大?没测试过,所以来问问,谢谢指点
作者
Author:
小范范1989    时间: 2018-12-18 08:24
1a.u.=2.1947*10^5 cm-1
作者
Author:
abin    时间: 2018-12-18 13:07
小范范1989 发表于 2018-12-18 08:24
你好,请问一下,基组对SOC的计算也有影响?
比如说6-31g*和3-21g*计算出来的差距会很大?没测试过,所 ...

手册有讲到,
MNF-SO应该需要使用全电子基组, 并且最好是手册里指定的基组类别。
这个手册有讲到的。

用其他的基组,得到的结果是否可靠, 不晓得。

我只是follow了手册, 别的情况没有测试。

作者
Author:
小范范1989    时间: 2018-12-19 08:36
abin 发表于 2018-12-18 13:07
手册有讲到,
MNF-SO应该需要使用全电子基组, 并且最好是手册里指定的基组类别。
这个手册有讲到的 ...

谢谢指点。
作者
Author:
blueyangliu    时间: 2018-12-19 09:21
abin 发表于 2018-12-18 13:07
手册有讲到,
MNF-SO应该需要使用全电子基组, 并且最好是手册里指定的基组类别。
这个手册有讲到的 ...

那岂不是过渡金属没法用这个方法算了
作者
Author:
abin    时间: 2018-12-19 09:32
blueyangliu 发表于 2018-12-19 09:21
那岂不是过渡金属没法用这个方法算了

不了解, 不做判定。

自己根据手册理解哦。

In the present implementation, the mean-field approach works only for basis sets with a generalized contraction scheme such as the ANO basis sets, raf-r, or cc-pVXZ(-DK). For other types of basis sets, the program might work without a crash, but it will most likely provide erroneous results.

以上是手册原文。
自行理解哦。

作者
Author:
rabbit0602    时间: 2022-4-9 10:13
abin 发表于 2018-12-17 23:33
@ Transition moment  in a.u. for
@ A operator label,    symmetry, spin:      Y1MNF-SO    1    1
@  ...

您好 请问SOC的计算 不需要在根号里除以3吗?
作者
Author:
喵星大佬    时间: 2022-4-9 10:38
你从哪里看出来要除以3的
作者
Author:
rabbit0602    时间: 2022-4-9 11:05
喵星大佬 发表于 2022-4-9 10:38
你从哪里看出来要除以3的

https://pubs.rsc.org/en/content/ ... 858e/unauth#tab2fna
您好 我看的是这篇文献 后半部分table2中hso的计算公式
作者
Author:
abin    时间: 2022-4-9 14:15
rabbit0602 发表于 2022-4-9 10:13
您好 请问SOC的计算 不需要在根号里除以3吗?

自己根据手册理解哦。

In the present implementation, the mean-field approach works only for basis sets with a generalized contraction scheme such as the ANO basis sets, raf-r, or cc-pVXZ(-DK). For other types of basis sets, the program might work without a crash, but it will most likely provide erroneous results.

以上是手册原文。
自行理解哦。

手册中的相似位置,
还有关于ECP基组的描述呢。

我记得Dalton 论坛有讲,
使用ECP基组处理SOCME 纯粹是瞎扯淡。

作者
Author:
guodx    时间: 2023-8-6 00:57
请问楼主的输入文件用的是哪个态的结构算的SOC
作者
Author:
zjxitcc    时间: 2023-8-6 09:57
guodx 发表于 2023-8-6 00:57
请问楼主的输入文件用的是哪个态的结构算的SOC

无需问楼主。wzkchem5大神在本论坛上回答过大量关于SOC的帖子,用必应或谷歌随便搜一下,就可以看到。建议把这些帖子里wzkchem5的回复全都看一遍。





欢迎光临 计算化学公社 (http://bbs.keinsci.com/) Powered by Discuz! X3.3