输出文件只输出以下内容:
Potential-1 for C( 12)- O( 16)
================================
State has OMEGA= 0 and energy asymptote: Y(lim)= 89605.16398(cm-1)
Perform 4-point piecewise polynomial interpolation over 30 input points
Interpolation actually performed over modified input array: Y(I) * r(I)**2
To make input points Y(i) consistent with Y(lim), add Y(shift)= 0.0000
Scale input points: (distance)* 1.000000000D+00 & (energy)* 1.000000000D+00
to get required internal units [Angstroms & cm-1 for potentials]
r(i) Y(i) r(i) Y(i) r(i) Y(i)
---------------------- ---------------------- ----------------------
1.11100000 219.9794 1.12100000 58.9728 1.13100000 0.4828
1.11200000 199.0415 1.12200000 48.6136 1.13200000 0.0000
1.11300000 179.2230 1.12300000 39.2860 1.13300000 0.4609
1.11400000 160.4798 1.12400000 30.9898 1.13400000 1.8875
1.11500000 142.7902 1.12500000 23.6594 1.13500000 4.2139
1.11600000 126.1979 1.12600000 17.3604 1.13600000 7.4841
1.11700000 110.6591 1.12700000 12.0272 1.13700000 11.6761
1.11800000 96.1738 1.12800000 7.6816 1.13800000 16.7898
1.11900000 82.7200 1.12900000 4.3236 1.13900000 22.8034
1.12000000 70.3197 1.13000000 1.9314 1.14000000 29.7169
----------------------------------------------------------------------------
Extrapolate to X .le. 1.1120 with
Y= -171.682 +1.264950D+29 * exp(-5.494114D+01*X)
Function for X .GE. 1.1390 generated as
Y= 89605.1640 - ( 8.191848D+09) * r** 13.038243 * exp{-( 11.519252*r)}
----------------------------------------------------------------------------
Calculate properties of the single potential described above
Potential-1 uses inner boundary condition of zero value at RMIN
Eigenvalue convergence criterion is EPS= 1.0D-06(cm-1)
Airy function at 3-rd turning point is quasibound outer boundary condition
Since state-1 has (projected) electronic angular momentum OMEGA= 0
eigenvalue calculations use centrifugal potential [J*(J+1) - 0]/r**2
Solve for the 4 vibration-rotation levels of Potential-1:
(v,J) = ( 0, 0) ( 1, 0) ( 2, 0) ( 3, 0)
and automatically increment J in steps of 1 to a maximum value of 1
Matrix element arguments are powers of the distance r (in Angstroms)
Coefficients of expansion for radial matrix element/expectation value argument:
1.000000D+00 -2.000000D-01 3.000000D-02 -4.000000D-03