Aocan 发表于 2026-1-27 10:13 嗯嗯,如果不读取相当于重新构建初猜然后检查你新构建的这个波函数稳不稳定,有可能你原先opt的时候用的是不稳定波函数。 |
wal 发表于 2026-1-27 09:59 没有读取。因为在E1点结构优化后我是没有用stable=opt,直接用的stable,显示的The wavefunction is stable under the perturbations considered. 这个意思是显示E1点结构优化后的波函数已经是稳定的了吧,所以我做激发的时候直接用的优化后的E1点的构型作为.gjf文件重新生成chk文件,并没有直接读取stable的chk文件。是我疏忽了,应该直接读取E1点结构优化后产生的chk文件或者stable产生的chk文件去做TD以及TDOPT,而不应该另外在计算的时候再生成 |
Aocan 发表于 2026-1-27 09:00 stable的时候guess=read读波函数了吗?我看你昨天好像不知道这个关键词。如果你是guess=read做的stable,你可以跳过这一步,用E1点的波函数优化激发态。 |
wal 发表于 2026-1-27 00:31 您说的是再次检测上图中E1点的波函数是否稳定并在之后优化E1点的构型吗,我在进行激发计算之前已经用opt=tight优化过基态构型,并用stable检测过E1点波函数已经是稳定的了,您的意思是需要再次先用stable=opt去稳定波函数,再进行结构优化,最后再次进行激发计算是吗 |
Aocan 发表于 2026-1-26 22:33 变了就说明你两次没收敛到一个波函数,虽然是变低了. 你需要重新做单点和优化,但是需要先stable=opt确保波函数稳定,且做优化的时候需要读取稳定的波函数进行优化 |
wal 发表于 2026-1-26 16:15 按照您修正的关键词算完后发现,单点能为 SCF Done: E(UB3LYP) = -3653.54215865 第二个激发态的激发能更小了 Excitation energies and oscillator strengths: Excited State 1: 1.506-A 0.7865 eV 1576.44 nm f=0.0000 <S**2>=0.317 298A -> 299A 0.70112 298B -> 299B 0.69683 Excited State 2: 1.116-A 0.9972 eV 1243.33 nm f=0.1614 <S**2>=0.061 298A -> 299A -0.70281 298B -> 299B 0.70691 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-DFT) = -3653.50551234 Copying the excited state density for this state as the 1-particle RhoCI density. Excited State 3: 2.505-A 1.4412 eV 860.30 nm f=0.0074 <S**2>=1.319 293A -> 299A -0.18651 295A -> 299A -0.12349 298A -> 300A 0.67060 293B -> 299B 0.18795 295B -> 299B -0.12335 298B -> 300B -0.66069 Excited State 4: 2.033-A 1.5960 eV 776.86 nm f=0.0002 <S**2>=0.784 298A -> 300A 0.67922 298B -> 300B 0.68846 Excited State 5: 2.309-A 1.7603 eV 704.33 nm f=0.0000 <S**2>=1.082 296A -> 299A -0.19385 297A -> 299A -0.62547 298A -> 301A 0.13293 297B -> 299B 0.70095 298B -> 301B 0.12928 Excited State 6: 2.278-A 1.7645 eV 702.64 nm f=0.0042 <S**2>=1.048 296A -> 299A 0.26429 297A -> 299A 0.67032 296B -> 299B 0.13699 297B -> 299B 0.65571 SavETr: write IOETrn= 770 NScale= 10 NData= 16 NLR=1 NState= 6 LETran= 118. Leave Link 914 at Mon Jan 26 20:20:19 2026, MaxMem= 3758096384 cpu: 195207.9 elap: 10173.7 (Enter /public/home/gws_liujun_02/g16/g16/l601.exe) Copying SCF densities to generalized density rwf, IOpCl= 1 IROHF=0. Hyperfine terms turned off by default for NAtoms > 100. |
本帖最后由 wal 于 2026-1-26 16:16 编辑 Aocan 发表于 2026-1-26 16:09 %oldchk=算激发时单点的那个chk #p ub3lyp/6-31g(d,p) guess=read em=gd3bj TD(Nstates=6, root=2) |
wal 发表于 2026-1-26 15:44 您说的意思是把S2的TD OPT输出文件存成.gjf文件,并输入如下指令吗 %nprocshared=50 %mem=28GB %oldchk=m29.chk %chk=m61.chk #p ub3lyp/6-31g(d,p) guess=mix m61 0 1 m29是纯算TD的文件,m61是新文件名。但是我有一点疑问,请问我要不要或者说怎么输入root=2什么之类的关键词去指定激发态呢,如果不指定运算过程中怎么从m29.chk文件中读取属于S2的波函数呢 |
Aocan 发表于 2026-1-26 14:09 用发射的结构,读激发那个波函数算个TD单点试一下 |
wal 发表于 2026-1-26 12:48 抱歉,您说的激发态index是指什么,不太明白,是如下的内容吗 TD输出文件中: # 1 0.7441 eV 1666.23 nm f= 0.00000 Spin multiplicity= ?: Ha -> La 50.4%, Hb -> Lb 48.1% # 2 1.0261 eV 1208.31 nm f= 0.19780 Spin multiplicity= ?: Hb -> Lb 51.0%, Ha -> La 48.8% # 3 1.4238 eV 870.80 nm f= 0.00490 Spin multiplicity= ?: Ha -> La+1 44.9%, Hb -> Lb+1 43.0% # 4 1.6286 eV 761.29 nm f= 0.00010 Spin multiplicity= ?: Hb -> Lb+1 47.8%, Ha -> La+1 46.1% # 5 1.7716 eV 699.84 nm f= 0.00010 Spin multiplicity= ?: Ha-1 -> La 42.8%, Hb-1 -> Lb 31.3%, Ha-2 -> La 21.4% # 6 1.7765 eV 697.91 nm f= 0.00450 Spin multiplicity= ?: Hb-1 -> Lb 62.3%, Ha-1 -> La 18.3%, Ha-2 -> La 14.0% # 7 1.8164 eV 682.58 nm f= 0.00130 Spin multiplicity= ?: Ha-3 -> La 60.8%, Ha-4 -> La 35.3% # 8 1.8175 eV 682.17 nm f= 0.00090 Spin multiplicity= ?: Hb-3 -> Lb 79.7%, Hb-4 -> Lb 16.7% # 9 1.8742 eV 661.53 nm f= 0.00000 Spin multiplicity= ?: Ha -> La+2 46.3%, Hb -> Lb+2 43.2% # 10 1.9063 eV 650.39 nm f= 0.00500 Spin multiplicity= ?: Ha-2 -> La 61.1%, Ha-1 -> La 35.7% # 11 1.9117 eV 648.55 nm f= 0.00420 Spin multiplicity= ?: Hb-2 -> Lb 94.4% # 12 1.9310 eV 642.07 nm f= 0.00710 Spin multiplicity= ?: Ha-4 -> La 50.5%, Ha-3 -> La 30.0%, Hb-4 -> Lb 12.9% TD OPT(root=2)输出文件中: Excitation energies and oscillator strengths: Excited State 1: 1.573-A 0.8224 eV 1507.63 nm f=0.0000 <S**2>=0.368 298A -> 299A 0.70103 298B -> 299B 0.69799 Excited State 2: 1.230-A 1.0940 eV 1133.33 nm f=0.2318 <S**2>=0.128 298A -> 299A -0.69480 298B -> 299B 0.69770 This state for optimization and/or second-order correction. Total Energy, E(CIS/TDA) = -3653.50195532 Copying the excited state density for this state as the 1-particle RhoCI density. Excited State 3: 2.531-A 1.4818 eV 836.70 nm f=0.0164 <S**2>=1.351 293A -> 299A -0.20105 295A -> 299A 0.13954 298A -> 300A 0.66044 293B -> 299B 0.20291 295B -> 299B 0.13974 298B -> 300B -0.65269 Excited State 4: 2.067-A 1.6585 eV 747.56 nm f=0.0003 <S**2>=0.818 293A -> 299A 0.14742 298A -> 300A 0.66564 293B -> 299B 0.14505 298B -> 300B 0.67295 Excited State 5: 2.308-A 1.7678 eV 701.36 nm f=0.0000 <S**2>=1.082 296A -> 299A -0.20016 297A -> 299A 0.60583 296B -> 299B -0.10625 297B -> 299B 0.74265 Excited State 6: 2.282-A 1.7704 eV 700.31 nm f=0.0042 <S**2>=1.052 296A -> 299A -0.28837 297A -> 299A 0.69558 296B -> 299B 0.13740 297B -> 299B -0.62652 |
| 建议展示个完整的激发/发射的激发态index |
手机版 Mobile version|北京科音自然科学研究中心 Beijing Kein Research Center for Natural Sciences|京公网安备 11010502035419号|计算化学公社 — 北京科音旗下高水平计算化学交流论坛 ( 京ICP备14038949号-1 )|网站地图
GMT+8, 2026-2-16 20:23 , Processed in 0.184875 second(s), 25 queries , Gzip On.