|
|
背景:想通过计算验证一个纯有机小分子自由基是否有荧光发射
计算步骤如下:
1.高斯view建模;
2.对基态进行结构优化和振动分析,高斯输入文件如下:
#p opt=(maxcycle=16,calcfc) freq 6-31g(d,p) scrf=(solvent=generic,read) uwb97x
test
02
(原子坐标)......
eps=48.9
epsinf=2.187
3.将步骤2的计算输出文件(.log)进行垂直激发能计算,输入文件如下:
#p td=(nstates=8,singlets) 6-31g(d,p) scrf=(solvent=generic,read) uwb97x
......
4.将步骤3的计算输出文件(.log)进行激发态的结构优化和振动分析,输入文件如下:
#p opt=(maxcycle=16,calcfc) freq 6-31g(d,p) scrf=(solvent=generic,read) uwb97x
......
5.将步骤4的计算输出文件(.log)进行垂直发射能计算,输入文件如下:
#p td=(nstates=8,singlets) 6-311g(d,p) scrf=(solvent=generic,read) uwb97x
......
咨询的问题如下(2个问题):
1.步骤3(激发能计算)的计算结果输出如下:
Excited State 1: 2.041-A 1.2682 eV 977.63 nm f=0.0001 <S**2>=0.791
41B -> 62B 0.10820
53B -> 62B 0.35379
55B -> 62B -0.12295
58B -> 62B 0.73445
59B -> 62B -0.48080
This state for optimization and/or second-order correction.
Total Energy, E(TD-HF/TD-DFT) = -870.302903856
Copying the excited state density for this state as the 1-particle RhoCI density.
Excited State 2: 2.137-A 1.9075 eV 649.98 nm f=0.0001 <S**2>=0.892
58B -> 62B 0.52997
59B -> 62B 0.79745
61B -> 62B 0.14436
Excited State 3: 3.445-A 2.2044 eV 562.43 nm f=0.0002 <S**2>=2.717
58A -> 64A 0.10547
61A -> 65A -0.20507
62A -> 63A -0.61835
62A -> 64A 0.15266
62A -> 67A -0.10597
57B -> 62B 0.11612
57B -> 64B -0.10612
60B -> 65B 0.20604
......
为什么S**2不是0.75? 这里0.892、2.717可以当做自由基吗?用不用考虑自旋污染呢?能否基于此计算结果进行后续的计算(垂直发射能计算)?
2.步骤5的计算输出结果如下:
Excited State 1: 2.040-A 1.2888 eV 962.01 nm f=0.0000 <S**2>=0.791
41B -> 62B 0.10808
......
59B -> 62B 0.47432
This state for optimization and/or second-order correction.
Total Energy, E(TD-HF/TD-DFT) = -870.497271587
Copying the excited state density for this state as the 1-particle RhoCI density.
Excited State 2: 2.139-A 1.9486 eV 636.27 nm f=0.0000 <S**2>=0.894
58B -> 62B -0.52347
59B -> 62B 0.79931
61B -> 62B -0.15285
Excited State 3: 3.446-A 2.1998 eV 563.61 nm f=0.0002 <S**2>=2.718
61A -> 65A -0.20448
......
61B <- 63B 0.15510
Excited State 4: 2.255-A 2.4763 eV 500.69 nm f=0.0004 <S**2>=1.021
52B -> 62B -0.18840
......
61B -> 62B 0.93145
Excited State 5: 3.467-A 2.7721 eV 447.26 nm f=0.0000 <S**2>=2.756
56A -> 63A -0.41981
......
56B <- 64B -0.14312
Excited State 6: 2.311-A 3.0240 eV 410.00 nm f=0.0004 <S**2>=1.085
53B -> 62B 0.71973
......
60B -> 62B -0.14130
计算出的各个跃迁途径对应的振子强度最高为0.0004,且D1-D0对应的发射波长为962.01 nm,这是不是说明这个自由基没有荧光发射?还是说是计算方式错误?
感谢各位老师!
|
|