|
|
老师,您好!根据您的回复我对我的输入文件进行了修改,但是还是会出现错误,错误代码如下。不知道如何进行下一步计算,请您指点一二。万分感谢!
Error in /var/ftp/test/2015/build/DALTON-Source/build/dalton.x, exit code 2
Backup: renaming /var/ftp/test/2015/build/DALTON-Source/build/a.tar.gz.1 to /var/ftp/test/
2015/build/DALTON-Source/build/a.tar.gz.2Backup: renaming /var/ftp/test/2015/build/DALTON-Source/build/a.tar.gz.0 to /var/ftp/test/
2015/build/DALTON-Source/build/a.tar.gz.1Backup: renaming /var/ftp/test/2015/build/DALTON-Source/build/a.tar.gz to /var/ftp/test/20
15/build/DALTON-Source/build/a.tar.gz.0a.tar.gz has been copied to /var/ftp/test/2015/build/DALTON-Source/build
Backup: renaming /var/ftp/test/2015/build/DALTON-Source/build/a.out.1 to /var/ftp/test/201
5/build/DALTON-Source/build/a.out.2Backup: renaming /var/ftp/test/2015/build/DALTON-Source/build/a.out.0 to /var/ftp/test/201
5/build/DALTON-Source/build/a.out.1Backup: renaming /var/ftp/test/2015/build/DALTON-Source/build/a.out to /var/ftp/test/2015/
build/DALTON-Source/build/a.out.0----------------------------------------------------------
WARNING for ERROR (Dalton program stopped with exit code 2)
- THEREFORE scratch directory /tmp/DALTON_scratch_root/a_4325 is not deleted
by this script so you may restart the calculation, if possible
( /tmp/DALTON_scratch_root/a_4325 may be deleted by your queueing system )
- REMEMBER to delete /tmp/DALTON_scratch_root/a_4325 yourself !!!
OUT文件如下:
************************************************************************
*************** Dalton - An Electronic Structure Program ***************
************************************************************************
This is output from DALTON 2015.0
----------------------------------------------------------------------------
NOTE:
Dalton is an experimental code for the evaluation of molecular
properties using (MC)SCF, DFT, CI, and CC wave functions.
The authors accept no responsibility for the performance of
the code or for the correctness of the results.
The code (in whole or part) is provided under a licence and
is not to be reproduced for further distribution without
the written permission of the authors or their representatives.
See the home page "http://daltonprogram.org" for further information.
If results obtained with this code are published,
the appropriate citations would be both of:
K. Aidas, C. Angeli, K. L. Bak, V. Bakken, R. Bast,
L. Boman, O. Christiansen, R. Cimiraglia, S. Coriani,
J. Cukras, P. Dahle, E. K. Dalskov, U. Ekstroem,
T. Enevoldsen, J. J. Eriksen, P. Ettenhuber, B. Fernandez,
L. Ferrighi, H. Fliegl, L. Frediani, K. Hald, A. Halkier,
C. Haettig, H. Heiberg, T. Helgaker, A. C. Hennum,
H. Hettema, E. Hjertenaes, S. Hoest, I.-M. Hoeyvik,
M. F. Iozzi, B. Jansik, H. J. Aa. Jensen, D. Jonsson,
P. Joergensen, M. Kaminski, J. Kauczor, S. Kirpekar,
T. Kjaergaard, W. Klopper, S. Knecht, R. Kobayashi, H. Koch,
J. Kongsted, A. Krapp, K. Kristensen, A. Ligabue,
O. B. Lutnaes, J. I. Melo, K. V. Mikkelsen, R. H. Myhre,
C. Neiss, C. B. Nielsen, P. Norman, J. Olsen,
J. M. H. Olsen, A. Osted, M. J. Packer, F. Pawlowski,
T. B. Pedersen, P. F. Provasi, S. Reine, Z. Rinkevicius,
T. A. Ruden, K. Ruud, V. Rybkin, P. Salek, C. C. M. Samson,
A. Sanchez de Meras, T. Saue, S. P. A. Sauer,
B. Schimmelpfennig, K. Sneskov, A. H. Steindal,
K. O. Sylvester-Hvid, P. R. Taylor, A. M. Teale,
E. I. Tellgren, D. P. Tew, A. J. Thorvaldsen, L. Thoegersen,
O. Vahtras, M. A. Watson, D. J. D. Wilson, M. Ziolkowski
and H. Agren,
"The Dalton quantum chemistry program system",
WIREs Comput. Mol. Sci. 2013. (doi: 10.1002/wcms.1172)
and
Dalton, a Molecular Electronic Structure Program,
Release DALTON2014.0 (2015), see http://daltonprogram.org
----------------------------------------------------------------------------
Authors in alphabetical order (major contribution(s) in parenthesis):
Kestutis Aidas, Vilnius University, Lithuania (QM/MM)
Celestino Angeli, University of Ferrara, Italy (NEVPT2)
Keld L. Bak, UNI-C, Denmark (AOSOPPA, non-adiabatic coupling, magnetic properties)
Vebjoern Bakken, University of Oslo, Norway (DALTON; geometry optimizer, symmetry detection)
Radovan Bast, KTH Stockholm, Sweden (DALTON installation and execution frameworks)
Pablo Baudin, University of Valencia, Spain (Cholesky excitation energies)
Linus Boman, NTNU, Norway (Cholesky decomposition and subsystems)
Ove Christiansen, Aarhus University, Denmark (CC module)
Renzo Cimiraglia, University of Ferrara, Italy (NEVPT2)
Sonia Coriani, University of Trieste, Italy (CC module, MCD in RESPONS)
Janusz Cukras, University of Trieste, Italy (MChD in RESPONS)
Paal Dahle, University of Oslo, Norway (Parallelization)
Erik K. Dalskov, UNI-C, Denmark (SOPPA)
Thomas Enevoldsen, Univ. of Southern Denmark, Denmark (SOPPA)
Janus J. Eriksen, Aarhus University, Denmark (Polarizable embedding model, TDA)
Berta Fernandez, U. of Santiago de Compostela, Spain (doublet spin, ESR in RESPONS)
Lara Ferrighi, Aarhus University, Denmark (PCM Cubic response)
Heike Fliegl, University of Oslo, Norway (CCSD(R12))
Luca Frediani, UiT The Arctic U. of Norway, Norway (PCM)
Bin Gao, UiT The Arctic U. of Norway, Norway (Gen1Int library)
Christof Haettig, Ruhr-University Bochum, Germany (CC module)
Kasper Hald, Aarhus University, Denmark (CC module)
Asger Halkier, Aarhus University, Denmark (CC module)
Erik D. Hedegaard, Univ. of Southern Denmark, Denmark (Polarizable embedding model, QM/MM)
Hanne Heiberg, University of Oslo, Norway (geometry analysis, selected one-electron integrals)
Trygve Helgaker, University of Oslo, Norway (DALTON; ABACUS, ERI, DFT modules, London, and much more)
Alf Christian Hennum, University of Oslo, Norway (Parity violation)
Hinne Hettema, University of Auckland, New Zealand (quadratic response in RESPONS; SIRIUS supersymmetry)
Eirik Hjertenaes, NTNU, Norway (Cholesky decomposition)
Maria Francesca Iozzi, University of Oslo, Norway (RPA)
Brano Jansik Technical Univ. of Ostrava Czech Rep. (DFT cubic response)
Hans Joergen Aa. Jensen, Univ. of Southern Denmark, Denmark (DALTON; SIRIUS, RESPONS, ABACUS modules, London, and much more)
Dan Jonsson, UiT The Arctic U. of Norway, Norway (cubic response in RESPONS module)
Poul Joergensen, Aarhus University, Denmark (RESPONS, ABACUS, and CC modules)
Maciej Kaminski, University of Warsaw, Poland (CPPh in RESPONS)
Joanna Kauczor, Linkoeping University, Sweden (Complex polarization propagator (CPP) module)
Sheela Kirpekar, Univ. of Southern Denmark, Denmark (Mass-velocity & Darwin integrals)
Wim Klopper, KIT Karlsruhe, Germany (R12 code in CC, SIRIUS, and ABACUS modules)
Stefan Knecht, ETH Zurich, Switzerland (Parallel CI and MCSCF)
Rika Kobayashi, Australian National Univ., Australia (DIIS in CC, London in MCSCF)
Henrik Koch, NTNU, Norway (CC module, Cholesky decomposition)
Jacob Kongsted, Univ. of Southern Denmark, Denmark (Polarizable embedding model, QM/MM)
Andrea Ligabue, University of Modena, Italy (CTOCD, AOSOPPA)
Nanna H. List Univ. of Southern Denmark, Denmark (Polarizable embedding model)
Ola B. Lutnaes, University of Oslo, Norway (DFT Hessian)
Juan I. Melo, University of Buenos Aires, Argentina (LRESC, Relativistic Effects on NMR Shieldings)
Kurt V. Mikkelsen, University of Copenhagen, Denmark (MC-SCRF and QM/MM)
Rolf H. Myhre, NTNU, Norway (Cholesky, subsystems and ECC2)
Christian Neiss, Univ. Erlangen-Nuernberg, Germany (CCSD(R12))
Christian B. Nielsen, University of Copenhagen, Denmark (QM/MM)
Patrick Norman, Linkoeping University, Sweden (Cubic response and complex response in RESPONS)
Jeppe Olsen, Aarhus University, Denmark (SIRIUS CI/density modules)
Jogvan Magnus H. Olsen, Univ. of Southern Denmark, Denmark (Polarizable embedding model, QM/MM)
Anders Osted, Copenhagen University, Denmark (QM/MM)
Martin J. Packer, University of Sheffield, UK (SOPPA)
Filip Pawlowski, Kazimierz Wielki University, Poland (CC3)
Morten N. Pedersen, Univ. of Southern Denmark, Denmark (Polarizable embedding model)
Thomas B. Pedersen, University of Oslo, Norway (Cholesky decomposition)
Patricio F. Provasi, University of Northeastern, Argentina (Analysis of coupling constants in localized orbitals)
Zilvinas Rinkevicius, KTH Stockholm, Sweden (open-shell DFT, ESR)
Elias Rudberg, KTH Stockholm, Sweden (DFT grid and basis info)
Torgeir A. Ruden, University of Oslo, Norway (Numerical derivatives in ABACUS)
Kenneth Ruud, UiT The Arctic U. of Norway, Norway (DALTON; ABACUS magnetic properties and much more)
Pawel Salek, KTH Stockholm, Sweden (DALTON; DFT code)
Claire C. M. Samson University of Karlsruhe Germany (Boys localization, r12 integrals in ERI)
Alfredo Sanchez de Meras, University of Valencia, Spain (CC module, Cholesky decomposition)
Trond Saue, Paul Sabatier University, France (direct Fock matrix construction)
Stephan P. A. Sauer, University of Copenhagen, Denmark (SOPPA(CCSD), SOPPA prop., AOSOPPA, vibrational g-factors)
Bernd Schimmelpfennig, Forschungszentrum Karlsruhe, Germany (AMFI module)
Kristian Sneskov, Aarhus University, Denmark (Polarizable embedding model, QM/MM)
Arnfinn H. Steindal, UiT The Arctic U. of Norway, Norway (parallel QM/MM, Polarizable embedding model)
Casper Steinmann, Univ. of Southern Denmark, Denmark (QFIT, Polarizable embedding model)
K. O. Sylvester-Hvid, University of Copenhagen, Denmark (MC-SCRF)
Peter R. Taylor, VLSCI/Univ. of Melbourne, Australia (Symmetry handling ABACUS, integral transformation)
Andrew M. Teale, University of Nottingham, England (DFT-AC, DFT-D)
David P. Tew, University of Bristol, England (CCSD(R12))
Olav Vahtras, KTH Stockholm, Sweden (triplet response, spin-orbit, ESR, TDDFT, open-shell DFT)
David J. Wilson, La Trobe University, Australia (DFT Hessian and DFT magnetizabilities)
Hans Agren, KTH Stockholm, Sweden (SIRIUS module, RESPONS, MC-SCRF solvation model)
--------------------------------------------------------------------------------
Date and time (Linux) : Mon Jul 6 08:33:59 2020
Host name : VM_0_3_centos
* Work memory size : 64000000 = 488.28 megabytes.
* Directories for basis set searches:
1) /var/ftp/test/2015/build/DALTON-Source/build
2) /var/ftp/test/2015/build/DALTON-Source/build/basis
Compilation information
-----------------------
Who compiled | root
Host | VM_0_3_centos
System | Linux-3.10.0-862.el7.x86_64
CMake generator | Unix Makefiles
Processor | x86_64
64-bit integers | OFF
MPI | OFF
Fortran compiler | /usr/bin/gfortran
Fortran compiler version | GNU Fortran (GCC) 4.8.5 20150623 (Red Hat 4.8.5-39
| )
C compiler | /usr/bin/gcc
C compiler version | gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-39)
C++ compiler | /usr/bin/g++
C++ compiler version | g++ (GCC) 4.8.5 20150623 (Red Hat 4.8.5-39)
Static linking | OFF
Last Git revision | d34efb170c481236ad60c789dea90a4c857c6bab
Configuration time | 2020-06-13 23:51:12.402262
Content of the .dal input file
----------------------------------
**DALTON
.RUN RESPONSE
.PEQM
*PEQM
.DIRECT
**WAVE FUNCTIONS
.DFT
CAMB3LYP
**RESPONSE
*QUADRATIC
.DIPLEN
.TWO-PHOTON
.ROOTS
4
**END OF
Content of the .mol file
----------------------------
BASIS
STO-3G
Acrolein
------------------------
AtomTypes=3 NoSymmetry Angstrom
Charge=6.0 Atoms=3
C -0.145335 -0.546770 0.000607
C 1.274009 -0.912471 -0.000167
C 1.630116 -2.207690 -0.000132
Charge=8.0 Atoms=1
O -0.560104 0.608977 0.000534
Charge=1.0 Atoms=4
H -0.871904 -1.386459 0.001253
H 2.004448 -0.101417 -0.000710
H 0.879028 -3.000685 0.000484
H 2.675323 -2.516779 -0.000673
*******************************************************************
*********** Output from DALTON general input processing ***********
*******************************************************************
--------------------------------------------------------------------------------
Overall default print level: 0
Print level for DALTON.STAT: 1
HERMIT 1- and 2-electron integral sections will be executed
"Old" integral transformation used (limited to max 255 basis functions)
Wave function sections will be executed (SIRIUS module)
Dynamic molecular response properties section will be executed (RESPONSE module)
Environment is modeled using polarizable embedding scheme (PE library)
--------------------------------------------------------------------------------
****************************************************************************
*************** Output of molecule and basis set information ***************
****************************************************************************
The two title cards from your ".mol" input:
------------------------------------------------------------------------
1: Acrolein
2: ------------------------
------------------------------------------------------------------------
Coordinates are entered in Angstrom and converted to atomic units.
- Conversion factor : 1 bohr = 0.52917721 A
Atomic type no. 1
--------------------
Nuclear charge: 6.00000
Number of symmetry independent centers: 3
Number of basis sets to read; 2
Basis set file used for this atomic type with Z = 6 :
"/var/ftp/test/2015/build/DALTON-Source/build/basis/STO-3G"
Atomic type no. 2
--------------------
Nuclear charge: 8.00000
Number of symmetry independent centers: 1
Number of basis sets to read; 2
Basis set file used for this atomic type with Z = 8 :
"/var/ftp/test/2015/build/DALTON-Source/build/basis/STO-3G"
Atomic type no. 3
--------------------
Nuclear charge: 1.00000
Number of symmetry independent centers: 4
Number of basis sets to read; 2
Basis set file used for this atomic type with Z = 1 :
"/var/ftp/test/2015/build/DALTON-Source/build/basis/STO-3G"
SYMGRP: Point group information
-------------------------------
@ Point group: C1
Isotopic Masses
---------------
C 12.000000
C 12.000000
C 12.000000
O 15.994915
H 1.007825
H 1.007825
H 1.007825
H 1.007825
Total mass: 56.026215 amu
Natural abundance: 96.446 %
Center-of-mass coordinates (a.u.): 0.973773 -1.393790 0.000425
Atoms and basis sets
--------------------
Number of atom types : 3
Total number of atoms: 8
Basis set used is "STO-3G" from the basis set library.
label atoms charge prim cont basis
----------------------------------------------------------------------
C 3 6.0000 15 5 [6s3p|2s1p]
O 1 8.0000 15 5 [6s3p|2s1p]
H 4 1.0000 3 1 [3s|1s]
----------------------------------------------------------------------
total: 8 30.0000 72 24
----------------------------------------------------------------------
Threshold for neglecting AO integrals: 1.00D-12
Cartesian Coordinates (a.u.)
----------------------------
Total number of coordinates: 24
C : 1 x -0.2746433464 2 y -1.0332455534 3 z 0.0011470638
C : 4 x 2.4075280908 5 y -1.7243202870 6 z -0.0003155843
C : 7 x 3.0804727920 8 y -4.1719294689 9 z -0.0002494438
O : 10 x -1.0584431615 11 y 1.1507997464 12 z 0.0010091138
H : 13 x -1.6476597673 14 y -2.6200277935 15 z 0.0023678268
H : 16 x 3.7878577518 17 y -0.1916503544 18 z -0.0013417055
H : 19 x 1.6611221762 20 y -5.6704728374 21 z 0.0009146274
H : 22 x 5.0556277659 23 y -4.7560230271 24 z -0.0012717857
Interatomic separations (in Angstrom):
--------------------------------------
C C C O H H
------ ------ ------ ------ ------ ------
C : 0.000000
C : 1.465700 0.000000
C : 2.431231 1.343281 0.000000
O : 1.227919 2.383018 3.568007 0.000000
H : 1.110397 2.197637 2.633349 2.019650 0.000000
H : 2.195429 1.091490 2.139278 2.661125 3.150355 0.000000
H : 2.659139 2.125241 1.092234 3.885970 2.381489 3.110036
H : 3.440501 2.130137 1.089951 4.498704 3.722962 2.506800
H H
------ ------
H : 0.000000
H : 1.860334 0.000000
Max interatomic separation is 4.4987 Angstrom ( 8.5013 Bohr)
between atoms 8 and 4, "H " and "O ".
Min HX interatomic separation is 1.0900 Angstrom ( 2.0597 Bohr)
Min YX interatomic separation is 1.2279 Angstrom ( 2.3204 Bohr)
Bond distances (Angstrom):
--------------------------
atom 1 atom 2 distance
------ ------ --------
bond distance: C C 1.465700
bond distance: C C 1.343281
bond distance: O C 1.227919
bond distance: H C 1.110397
bond distance: H C 1.091490
bond distance: H C 1.092234
bond distance: H C 1.089951
Bond angles (degrees):
----------------------
atom 1 atom 2 atom 3 angle
------ ------ ------ -----
bond angle: C C O 124.190
bond angle: C C H 116.421
bond angle: O C H 119.389
bond angle: C C C 119.821
bond angle: C C H 117.558
bond angle: C C H 122.621
bond angle: C C H 121.182
bond angle: C C H 121.847
bond angle: H C H 116.971
Principal moments of inertia (u*A**2) and principal axes
--------------------------------------------------------
IA 10.696865 -0.668732 0.743503 0.000230
IB 108.794831 0.743503 0.668732 -0.000587
IC 119.491696 0.000590 0.000221 1.000000
Rotational constants
--------------------
@ The molecule is planar.
A B C
47245.5253 4645.2483 4229.4069 MHz
1.575941 0.154949 0.141078 cm-1
@ Nuclear repulsion energy : 102.664846860515 Hartree
Reading potential input file for polarizable embedding calculation
|
|