|
本帖最后由 kunkun 于 2018-11-28 16:10 编辑
原文:Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein–protein binding free energies and re-rank binding poses generated by protein–protein docking†
文献结果表明隐式模型下的MMGBSA的模拟效果最好..甚至比显式模型更好...
FF02力场的参数也比AMBER14SB更好...(我在考虑要不要用最新的fb15或则ff15ipq)
表示很疑问??有大神帮忙分析下么!!我到底要不要参考它.....
我用隐式模型计算速度比显式模型还要慢....我的天。愁死个ren
另外还有个疑问。隐式模型下MMPBSA.py的运行该怎么生成solvent的拓扑文件啊... 其中-sp项和-cp项我按照一个文件输入了..
tleap:生成..
# make tleap
tleap = '''source leaprc.protein.ff15ipq
com = loadpdb %s
a = loadpdb antigen.pdb
ab = loadpdb antibody.pdb
set default PBRadii mbondi2
saveamberparm com complex.prmtop complex.inpcrd
saveamberparm a antigen.prmtop antigen.inpcrd
saveamberparm ab antibody.prmtop antibody.inpcrd
saveamberparm com complex_sol.prmtop complex_sol.inpcrd
savepdb com complex_sol.pdb
quit
''' % (self.pdbfile)
mmpbsa运行:
def run_mmgbsa(self):
print 'Running MMGBSA...'
os.system('mpirun --allow-run-as-root -np 44 MMPBSA.py.MPI -O -i mmpbsa.in -o FINAL_RESULTS_MMPBSA.dat \
-sp complex_sol.prmtop \
-cp complex.prmtop \
-rp antigen.prmtop \
-lp antibody.prmtop \
-y md.mdcrd > mmpbsa.log 2>&1')
|
|