|
|
各位老师好,最近在计算一个小分子的荧光发射,算的是真空的环境,对数据读取有点疑问。
第一步的输入文件是:
#n B3LYP/6-31G** Opt freq
第二步的输入文件是:
# B3LYP/6-31G** TD=NStates=15 Geom=Check Guess=Read
第二步的log文件中读取:
Excitation energies and oscillator strengths:
Excited State 1: Singlet-A 3.6964 eV 335.42 nm f=0.7280 <S**2>=0.000
74 -> 75 0.69682
This state for optimization and/or second-order correction.
Total Energy, E(TD-HF/TD-DFT) = -1256.74357695
Copying the excited state density for this state as the 1-particle RhoCI density.
Excited State 2: Singlet-A 3.8235 eV 324.27 nm f=0.0236 <S**2>=0.000
73 -> 75 0.69625
Excited State 3: Singlet-A 4.1408 eV 299.42 nm f=0.0552 <S**2>=0.000
72 -> 75 0.67300
74 -> 77 0.14690
Excited State 4: Singlet-A 4.4561 eV 278.23 nm f=0.0002 <S**2>=0.000
71 -> 75 0.68762
Excited State 5: Singlet-A 4.5802 eV 270.70 nm f=0.0004 <S**2>=0.000
69 -> 75 0.66910
69 -> 76 -0.15879
Excited State 6: Singlet-A 4.9878 eV 248.58 nm f=0.1221 <S**2>=0.000
70 -> 75 -0.46811
74 -> 76 0.49766
Excited State 7: Singlet-A 5.0709 eV 244.50 nm f=0.0543 <S**2>=0.000
68 -> 75 -0.10132
70 -> 75 0.20495
73 -> 76 0.41146
73 -> 78 0.11163
73 -> 80 -0.11121
74 -> 77 -0.25421
74 -> 78 -0.38900
Excited State 8: Singlet-A 5.2887 eV 234.43 nm f=0.0233 <S**2>=0.000
70 -> 75 0.38803
72 -> 77 0.10702
73 -> 76 -0.21099
73 -> 78 0.17814
74 -> 76 0.40951
74 -> 78 0.23537
Excited State 9: Singlet-A 5.4495 eV 227.51 nm f=0.0434 <S**2>=0.000
70 -> 75 0.18445
72 -> 75 -0.14772
72 -> 76 -0.16943
74 -> 77 0.57321
74 -> 78 -0.23086
Excited State 10: Singlet-A 5.5163 eV 224.76 nm f=0.0189 <S**2>=0.000
68 -> 75 0.58170
72 -> 76 -0.12994
73 -> 76 0.24527
73 -> 78 -0.14649
74 -> 80 0.13677
Excited State 11: Singlet-A 5.6605 eV 219.04 nm f=0.0001 <S**2>=0.000
73 -> 79 0.11926
74 -> 79 0.69245
Excited State 12: Singlet-A 5.6710 eV 218.63 nm f=0.0182 <S**2>=0.000
68 -> 75 0.13302
73 -> 76 -0.24663
73 -> 77 0.55353
73 -> 78 -0.21939
74 -> 78 -0.21613
Excited State 13: Singlet-A 5.6746 eV 218.49 nm f=0.0393 <S**2>=0.000
68 -> 75 -0.27291
72 -> 76 -0.12493
73 -> 76 0.33031
73 -> 77 0.32301
73 -> 78 -0.15175
73 -> 80 0.12287
74 -> 78 0.34366
Excited State 14: Singlet-A 5.7207 eV 216.73 nm f=0.0221 <S**2>=0.000
72 -> 76 0.61367
73 -> 77 0.14736
73 -> 78 0.14559
74 -> 77 0.18020
Excited State 15: Singlet-A 5.8165 eV 213.16 nm f=0.0000 <S**2>=0.000
73 -> 79 0.68338
74 -> 79 -0.11900
SavETr: write IOETrn= 770 NScale= 10 NData= 16 NLR=1 NState= 15 LETran= 280.
第一激发态为振子强度最大的状态,所以第三步对第一激发态进行结构优化:
# opt freq b3lyp/6-31g** TD=(NStates=10,Root=1)
那么第三步的log文件中:
Excited State 1: Singlet-A 3.2474 eV 381.80 nm f=0.7638 <S**2>=0.000
74 -> 75 0.70021
This state for optimization and/or second-order correction.
Total Energy, E(TD-HF/TD-DFT) = -1256.75200598
Copying the excited state density for this state as the 1-particle RhoCI density.
请问,这个381.80 nm是不是这个分子的发射呢?
|
|