|
|
在服务器跑简单的机构优化出现算不下去的情况,持续数个小时: Two-electron integ...
输出文件:
Entering Link 1 = D:\G09W\l1.exe PID= 13844.
Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013,
Gaussian, Inc. All Rights Reserved.
This is part of the Gaussian(R) 09 program. It is based on
the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.),
the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.),
the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.),
the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.),
the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.),
the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.),
the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon
University), and the Gaussian 82(TM) system (copyright 1983,
Carnegie Mellon University). Gaussian is a federally registered
trademark of Gaussian, Inc.
This software contains proprietary and confidential information,
including trade secrets, belonging to Gaussian, Inc.
This software is provided under written license and may be
used, copied, transmitted, or stored only in accord with that
written license.
The following legend is applicable only to US Government
contracts under FAR:
RESTRICTED RIGHTS LEGEND
Use, reproduction and disclosure by the US Government is
subject to restrictions as set forth in subparagraphs (a)
and (c) of the Commercial Computer Software - Restricted
Rights clause in FAR 52.227-19.
Gaussian, Inc.
340 Quinnipiac St., Bldg. 40, Wallingford CT 06492
---------------------------------------------------------------
Warning -- This program may not be used in any manner that
competes with the business of Gaussian, Inc. or will provide
assistance to any competitor of Gaussian, Inc. The licensee
of this program is prohibited from giving any competitor of
Gaussian, Inc. access to this program. By using this program,
the user acknowledges that Gaussian, Inc. is engaged in the
business of creating and licensing software in the field of
computational chemistry and represents and warrants to the
licensee that it is not a competitor of Gaussian, Inc. and that
it will not use this program in any manner prohibited above.
---------------------------------------------------------------
Cite this work as:
Gaussian 09, Revision D.01,
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci,
G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian,
A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada,
M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima,
Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr.,
J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers,
K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand,
K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi,
M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross,
V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,
O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,
R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth,
P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels,
O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski,
and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.
******************************************
Gaussian 09: IA32W-G09RevD.01 24-Apr-2013
07-Sep-2023
******************************************
%chk=C:\Users\win\Desktop\1.chk
------------------------
# b3lyp/6-311g* opt freq
------------------------
1/14=-1,18=20,19=15,26=3,38=1/1,3;
2/9=110,12=2,17=6,18=5,40=1/2;
3/5=4,6=6,7=1,11=2,16=1,25=1,30=1,71=1,74=-5/1,2,3;
4//1;
5/5=2,38=5/2;
6/7=2,8=2,9=2,10=2,28=1/1;
7//1,2,3,16;
1/14=-1,18=20,19=15,26=3/3(2);
2/9=110/2;
99//99;
2/9=110/2;
3/5=4,6=6,7=1,11=2,16=1,25=1,30=1,71=1,74=-5/1,2,3;
4/5=5,16=3,69=1/1;
5/5=2,38=5/2;
7//1,2,3,16;
1/14=-1,18=20,19=15,26=3/3(-5);
2/9=110/2;
6/7=2,8=2,9=2,10=2,19=2,28=1/1;
99/9=1/99;
-------------------
Title Card Required
-------------------
Symbolic Z-matrix:
Charge = 0 Multiplicity = 1
C 0.00757 1.16265 -1.20811
C -0.02275 -0.23219 -1.20796
C -0.03864 -0.92942 0.
C -0.02275 -0.23219 1.20796
C 0.00757 1.16265 1.20811
C 0.02268 1.85999 0.
H 0.01965 1.71217 -2.16048
H -0.03543 -0.78165 -2.16042
H -0.03543 -0.78165 2.16042
H 0.01965 1.71217 2.16048
H 0.04676 2.95933 0.
O -0.07055 -2.35906 0.
H 0.82702 -2.69963 0.
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Berny optimization.
Initialization pass.
----------------------------
! Initial Parameters !
! (Angstroms and Degrees) !
-------------------------- --------------------------
! Name Definition Value Derivative Info. !
--------------------------------------------------------------------------------
! R1 R(1,2) 1.3952 estimate D2E/DX2 !
! R2 R(1,6) 1.395 estimate D2E/DX2 !
! R3 R(1,7) 1.0996 estimate D2E/DX2 !
! R4 R(2,3) 1.3948 estimate D2E/DX2 !
! R5 R(2,8) 1.0997 estimate D2E/DX2 !
! R6 R(3,4) 1.3948 estimate D2E/DX2 !
! R7 R(3,12) 1.43 estimate D2E/DX2 !
! R8 R(4,5) 1.3952 estimate D2E/DX2 !
! R9 R(4,9) 1.0997 estimate D2E/DX2 !
! R10 R(5,6) 1.395 estimate D2E/DX2 !
! R11 R(5,10) 1.0996 estimate D2E/DX2 !
! R12 R(6,11) 1.0996 estimate D2E/DX2 !
! R13 R(12,13) 0.96 estimate D2E/DX2 !
! A1 A(2,1,6) 119.9943 estimate D2E/DX2 !
! A2 A(2,1,7) 119.9972 estimate D2E/DX2 !
! A3 A(6,1,7) 120.0085 estimate D2E/DX2 !
! A4 A(1,2,3) 120.0057 estimate D2E/DX2 !
! A5 A(1,2,8) 119.9808 estimate D2E/DX2 !
! A6 A(3,2,8) 120.0134 estimate D2E/DX2 !
! A7 A(2,3,4) 120.0002 estimate D2E/DX2 !
! A8 A(2,3,12) 119.9999 estimate D2E/DX2 !
! A9 A(4,3,12) 119.9999 estimate D2E/DX2 !
! A10 A(3,4,5) 120.0057 estimate D2E/DX2 !
! A11 A(3,4,9) 120.0134 estimate D2E/DX2 !
! A12 A(5,4,9) 119.9808 estimate D2E/DX2 !
! A13 A(4,5,6) 119.9943 estimate D2E/DX2 !
! A14 A(4,5,10) 119.9972 estimate D2E/DX2 !
! A15 A(6,5,10) 120.0085 estimate D2E/DX2 !
! A16 A(1,6,5) 119.9996 estimate D2E/DX2 !
! A17 A(1,6,11) 120.0002 estimate D2E/DX2 !
! A18 A(5,6,11) 120.0002 estimate D2E/DX2 !
! A19 A(3,12,13) 109.5 estimate D2E/DX2 !
! D1 D(6,1,2,3) 0.0323 estimate D2E/DX2 !
! D2 D(6,1,2,8) 179.9532 estimate D2E/DX2 !
! D3 D(7,1,2,3) -179.9729 estimate D2E/DX2 !
! D4 D(7,1,2,8) -0.052 estimate D2E/DX2 !
! D5 D(2,1,6,5) 0.0051 estimate D2E/DX2 !
! D6 D(2,1,6,11) 179.9892 estimate D2E/DX2 !
! D7 D(7,1,6,5) -179.9897 estimate D2E/DX2 !
! D8 D(7,1,6,11) -0.0055 estimate D2E/DX2 !
! D9 D(1,2,3,4) -0.0697 estimate D2E/DX2 !
! D10 D(1,2,3,12) 179.9619 estimate D2E/DX2 !
! D11 D(8,2,3,4) -179.9906 estimate D2E/DX2 !
! D12 D(8,2,3,12) 0.041 estimate D2E/DX2 !
! D13 D(2,3,4,5) 0.0697 estimate D2E/DX2 !
! D14 D(2,3,4,9) 179.9906 estimate D2E/DX2 !
! D15 D(12,3,4,5) -179.9619 estimate D2E/DX2 !
! D16 D(12,3,4,9) -0.041 estimate D2E/DX2 !
! D17 D(2,3,12,13) 89.9842 estimate D2E/DX2 !
! D18 D(4,3,12,13) -89.9842 estimate D2E/DX2 !
! D19 D(3,4,5,6) -0.0323 estimate D2E/DX2 !
! D20 D(3,4,5,10) 179.9729 estimate D2E/DX2 !
! D21 D(9,4,5,6) -179.9532 estimate D2E/DX2 !
! D22 D(9,4,5,10) 0.052 estimate D2E/DX2 !
! D23 D(4,5,6,1) -0.0051 estimate D2E/DX2 !
! D24 D(4,5,6,11) -179.9892 estimate D2E/DX2 !
! D25 D(10,5,6,1) 179.9897 estimate D2E/DX2 !
! D26 D(10,5,6,11) 0.0055 estimate D2E/DX2 !
--------------------------------------------------------------------------------
Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06
Number of steps in this run= 68 maximum allowed number of steps= 100.
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Input orientation:
---------------------------------------------------------------------
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
---------------------------------------------------------------------
1 6 0 0.007572 1.162645 -1.208106
2 6 0 -0.022750 -0.232185 -1.207963
3 6 0 -0.038642 -0.929419 0.000000
4 6 0 -0.022750 -0.232185 1.207963
5 6 0 0.007572 1.162645 1.208106
6 6 0 0.022678 1.859988 0.000000
7 1 0 0.019648 1.712174 -2.160480
8 1 0 -0.035430 -0.781645 -2.160420
9 1 0 -0.035430 -0.781645 2.160420
10 1 0 0.019648 1.712174 2.160480
11 1 0 0.046756 2.959328 0.000000
12 8 0 -0.070545 -2.359063 0.000000
13 1 0 0.827016 -2.699627 0.000000
---------------------------------------------------------------------
Distance matrix (angstroms):
1 2 3 4 5
1 C 0.000000
2 C 1.395160 0.000000
3 C 2.416275 1.394834 0.000000
4 C 2.789957 2.415926 1.394834 0.000000
5 C 2.416212 2.789957 2.416275 1.395160 0.000000
6 C 1.395004 2.416283 2.790080 2.416283 1.395004
7 H 1.099610 2.165553 3.413075 3.889567 3.413136
8 H 2.165414 1.099655 2.165470 3.412927 3.889612
9 H 3.889612 3.412927 2.165470 1.099655 2.165414
10 H 3.413136 3.889567 3.413075 2.165553 1.099610
11 H 2.165439 3.413175 3.889684 3.413175 2.165439
12 O 3.723983 2.446440 1.430000 2.446440 3.723983
13 H 4.128941 2.875681 1.970533 2.875681 4.128941
6 7 8 9 10
6 C 0.000000
7 H 2.165532 0.000000
8 H 3.413065 2.494427 0.000000
9 H 3.413065 4.989223 4.320840 0.000000
10 H 2.165532 4.320959 4.989223 2.494427 0.000000
11 H 1.099604 2.494755 4.320770 4.320770 2.494755
12 O 4.220080 4.609856 2.675237 2.675237 4.609856
13 H 4.630015 4.978303 3.014943 3.014943 4.978303
11 12 13
11 H 0.000000
12 O 5.319684 0.000000
13 H 5.712493 0.960000 0.000000
Stoichiometry C6H6O
Framework group CS[SG(C2H2O),X(C4H4)]
Deg. of freedom 19
Full point group CS NOp 2
Largest Abelian subgroup CS NOp 2
Largest concise Abelian subgroup CS NOp 2
Standard orientation:
---------------------------------------------------------------------
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
---------------------------------------------------------------------
1 6 0 -0.017698 -1.162591 1.208106
2 6 0 -0.017698 0.232569 1.207963
3 6 0 -0.018433 0.929983 0.000000
4 6 0 -0.017698 0.232569 -1.207963
5 6 0 -0.017698 -1.162591 -1.208106
6 6 0 -0.017751 -1.860097 0.000000
7 1 0 -0.017568 -1.712253 2.160480
8 1 0 -0.018433 0.782174 2.160420
9 1 0 -0.018433 0.782174 -2.160420
10 1 0 -0.017568 -1.712253 -2.160480
11 1 0 -0.017571 -2.959701 0.000000
12 8 0 -0.019258 2.359982 0.000000
13 1 0 0.885493 2.680959 0.000000
---------------------------------------------------------------------
Rotational constants (GHZ): 5.6371881 2.5434222 1.7622571
Standard basis: 6-311G(d) (5D, 7F)
There are 92 symmetry adapted cartesian basis functions of A' symmetry.
There are 59 symmetry adapted cartesian basis functions of A" symmetry.
There are 87 symmetry adapted basis functions of A' symmetry.
There are 57 symmetry adapted basis functions of A" symmetry.
144 basis functions, 254 primitive gaussians, 151 cartesian basis functions
25 alpha electrons 25 beta electrons
nuclear repulsion energy 268.8567840465 Hartrees.
NAtoms= 13 NActive= 13 NUniq= 9 SFac= 2.09D+00 NAtFMM= 60 NAOKFM=F Big=F
Integral buffers will be 262144 words long.
Raffenetti 2 integral format.
Two-electron integral symmetry is turned on.
|
|