|
高斯对分子进行opt+freq 时,每次提交的任务会在30min-3h之内自行中断
本帖最后由 PengyueJin 于 2022-12-7 21:02 编辑
高斯对分子进行opt+freq 时,每次提交的任务会在30min-3h之内自行中断原始输入文件
%chk=M.chk
%mem=20000MB
%nprocshared=20
# opt freq b3lyp/6-31g(d) empiricaldispersion=gd3bj
已做尝试
1重新绘制分子
2 修改输入文件,推测分子对称性过高,增加对称性破缺 # opt freq b3lyp/6-31g(d) symm=loose empiricaldispersion=gd3bj 计算中断
3 修改输入文件,将内坐标改为笛卡尔坐标, # Opt=Cartesian freq b3lyp/6-31g(d) empiricaldispersion=gd3bj 计算中断
4 修改输入文件,改变计算方法# Opt=GDIIS freq b3lyp/6-31g(d) empiricaldispersion=gd3bj 计算中断
附上4的部分输出文件
Entering Gaussian System, Link 0=g16
Input=M.com
Output=M.log
Initial command:
/home/wwh/g16/l1.exe "/home/wwh/jpy/Gau-32146.inp" -scrdir="/home/wwh/jpy/"
Entering Link 1 = /home/wwh/g16/l1.exe PID= 32148.
******************************************
Gaussian 16: ES64L-G16RevA.03 25-Dec-2016
7-Dec-2022
******************************************
%chk=M.chk
%mem=20000MB
%nprocshared=20
Will use up to 20 processors via shared memory.
---------------------------------------------------------
# opt=GDIIS freq b3lyp/6-31g(d) empiricaldispersion=gd3bj
---------------------------------------------------------
Warning! Use of Opt=GDIIS is deprecated since it is seldom a good choice.
1/18=20,19=11,26=3,38=1/1,3;
2/9=110,12=2,17=6,18=5,40=1/2;
3/5=1,6=6,7=1,11=2,25=1,30=1,71=1,74=-5,124=41/1,2,3;
4//1;
5/5=2,38=5/2;
6/7=2,8=2,9=2,10=2,28=1/1;
7//1,2,3,16;
1/18=20,19=11,26=3/3(2);
2/9=110/2;
99//99;
2/9=110/2;
3/5=1,6=6,7=1,11=2,25=1,30=1,71=1,74=-5,124=41/1,2,3;
4/5=5,16=3,69=1/1;
5/5=2,38=5/2;
7//1,2,3,16;
1/18=20,19=11,26=3/3(-5);
2/9=110/2;
6/7=2,8=2,9=2,10=2,19=2,28=1/1;
99/9=1/99;
-------------------
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Berny optimization.
Initialization pass.
Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 EigMax=2.50D+02 EigMin=1.00D-04
Number of steps in this run= 482 maximum allowed number of steps= 516.
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Stoichiometry C42H40N4
Framework group C1[X(C42H40N4)]
Deg. of freedom 252
Full point group C1 NOp 1
Largest Abelian subgroup C1 NOp 1
Largest concise Abelian subgroup C1 NOp 1
Rotational constants (GHZ): 0.0646433 0.0540137 0.0315762
Standard basis: 6-31G(d) (6D, 7F)
There are 770 symmetry adapted cartesian basis functions of A symmetry.
There are 770 symmetry adapted basis functions of A symmetry.
770 basis functions, 1448 primitive gaussians, 770 cartesian basis functions
160 alpha electrons 160 beta electrons
nuclear repulsion energy 5215.9937704488 Hartrees.
NAtoms= 86 NActive= 86 NUniq= 86 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=T Big=T
Integral buffers will be 131072 words long.
Raffenetti 2 integral format.
Two-electron integral symmetry is turned on.
Nuclear repulsion after empirical dispersion term = 5215.7712949277 Hartrees.
One-electron integrals computed using PRISM.
NBasis= 770 RedAO= T EigKep= 3.74D-04 NBF= 770
NBsUse= 770 1.00D-06 EigRej= -1.00D+00 NBFU= 770
ExpMin= 1.61D-01 ExpMax= 4.17D+03 ExpMxC= 6.27D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00
Harris functional with IExCor= 402 and IRadAn= 5 diagonalized for initial guess.
HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14
ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000
FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 2001
NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T
wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0
NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0
Petite list used in FoFCou.
Requested convergence on RMS density matrix=1.00D-08 within 128 cycles.
Requested convergence on MAX density matrix=1.00D-06.
Requested convergence on energy=1.00D-06.
No special actions if energy rises.
Integral accuracy reduced to 1.0D-05 until final iterations.
Initial convergence to 1.0D-05 achieved. Increase integral accuracy.
SCF Done: E(RB3LYP) = -1843.66986169 A.U. after 14 cycles
NFock= 14 Conv=0.74D-08 -V/T= 2.0093
**********************************************************************
Population analysis using the SCF density.
**********************************************************************
Electronic spatial extent (au): <R**2>= 32690.5852
Charge= -0.0000 electrons
Dipole moment (field-independent basis, Debye):
X= 0.1152 Y= 0.7796 Z= 1.1335 Tot= 1.3806
Quadrupole moment (field-independent basis, Debye-Ang):
XX= -256.8059 YY= -255.3647 ZZ= -260.0253
XY= 12.7513 XZ= 4.8420 YZ= 1.7502
Traceless Quadrupole moment (field-independent basis, Debye-Ang):
XX= 0.5927 YY= 2.0339 ZZ= -2.6266
XY= 12.7513 XZ= 4.8420 YZ= 1.7502
Octapole moment (field-independent basis, Debye-Ang**2):
XXX= -20.9203 YYY= 6.2111 ZZZ= 9.4335 XYY= -29.7027
XXY= 42.4979 XXZ= 25.1053 XZZ= 16.9622 YZZ= -0.0868
YYZ= 51.5243 XYZ= -57.9295
Hexadecapole moment (field-independent basis, Debye-Ang**3):
XXXX= -22174.0321 YYYY= -19080.5305 ZZZZ= -1896.2763 XXXY= 526.1966
XXXZ= 149.8071 YYYX= 227.3149 YYYZ= -91.8599 ZZZX= 48.2115
ZZZY= -52.0220 XXYY= -7294.6149 XXZZ= -4257.8104 YYZZ= -3426.2013
XXYZ= 81.8772 YYXZ= -130.0446 ZZXY= -83.1552
N-N= 5.215771294928D+03 E-N=-1.470363310089D+04 KE= 1.826610740861D+03
Calling FoFJK, ICntrl= 2127 FMM=T ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0.
Quadratic step=7.373D+00 exceeds max=3.000D-01 adjusted using Lamda=-5.066D-01.
Angle between NR and scaled steps= 57.10 degrees.
Angle between quadratic step and forces= 10.33 degrees.
Linear search not attempted -- option 19 set.
Iteration 1 RMS(Cart)= 0.11529539 RMS(Int)= 0.00145900
Iteration 2 RMS(Cart)= 0.00325323 RMS(Int)= 0.00017906
Iteration 3 RMS(Cart)= 0.00000678 RMS(Int)= 0.00017905
Iteration 4 RMS(Cart)= 0.00000000 RMS(Int)= 0.00017905
Rotational constants (GHZ): 0.0623799 0.0544961 0.0311471
Standard basis: 6-31G(d) (6D, 7F)
There are 770 symmetry adapted cartesian basis functions of A symmetry.
There are 770 symmetry adapted basis functions of A symmetry.
770 basis functions, 1448 primitive gaussians, 770 cartesian basis functions
160 alpha electrons 160 beta electrons
nuclear repulsion energy 5188.0788737651 Hartrees.
NAtoms= 86 NActive= 86 NUniq= 86 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=T Big=T
Integral buffers will be 131072 words long.
Raffenetti 2 integral format.
Two-electron integral symmetry is turned on.
Nuclear repulsion after empirical dispersion term = 5187.8586120963 Hartrees.
One-electron integrals computed using PRISM.
NBasis= 770 RedAO= T EigKep= 3.70D-04 NBF= 770
NBsUse= 770 1.00D-06 EigRej= -1.00D+00 NBFU= 770
Initial guess from the checkpoint file: "M.chk"
B after Tr= 0.000000 -0.000000 0.000000
Rot= 0.996671 0.002443 0.001020 0.081486 Ang= 9.35 deg.
ExpMin= 1.61D-01 ExpMax= 4.17D+03 ExpMxC= 6.27D+02 IAcc=2 IRadAn= 4 AccDes= 0.00D+00
Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess.
HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14
ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000
FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 2001
NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T
wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0
NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0
Petite list used in FoFCou.
Requested convergence on RMS density matrix=1.00D-08 within 128 cycles.
Requested convergence on MAX density matrix=1.00D-06.
Requested convergence on energy=1.00D-06.
No special actions if energy rises.
Integral accuracy reduced to 1.0D-05 until final iterations.
Initial convergence to 1.0D-05 achieved. Increase integral accuracy.
SCF Done: E(RB3LYP) = -1843.70980032 A.U. after 12 cycles
NFock= 12 Conv=0.85D-08 -V/T= 2.0097
Calling FoFJK, ICntrl= 2127 FMM=T ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0.
***** Axes restored to original set *****
Cartesian Forces: Max 0.035073128 RMS 0.008405791
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Berny optimization.
Using GDIIS optimizer.
FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4.
Internal Forces: Max 0.016933283 RMS 0.004441256
Search for a local minimum.
Step number 2 out of a maximum of 482
All quantities printed in internal units (Hartrees-Bohrs-Radians)
Swapping is turned off.
Update second derivatives using D2CorX and points 1 2
DE= -3.99D-02 DEPred=-5.30D-02 R= 7.54D-01
TightC=F SS= 1.41D+00 RLast= 3.00D-01 DXNew= 5.0454D-01 9.0011D-01
Trust test= 7.54D-01 RLast= 3.00D-01 DXMaxT set to 5.05D-01
ITU= 1 0
DIIS coeff's: 1.57862 -0.57862
Cosine: 1.000 > 0.970
Length: 1.000
GDIIS step was calculated using 2 of the last 2 vectors.
Maximum step size ( 0.505) exceeded in Quadratic search.
-- Step size scaled by 0.893
Iteration 1 RMS(Cart)= 0.26755597 RMS(Int)= 0.05462193
Iteration 2 RMS(Cart)= 0.19731369 RMS(Int)= 0.01577800
Iteration 3 RMS(Cart)= 0.06433347 RMS(Int)= 0.00400649
Iteration 4 RMS(Cart)= 0.00267730 RMS(Int)= 0.00389909
Iteration 5 RMS(Cart)= 0.00001919 RMS(Int)= 0.00389909
Iteration 6 RMS(Cart)= 0.00000043 RMS(Int)= 0.00389909
Item Value Threshold Converged?
Maximum Force 0.016933 0.000450 NO
RMS Force 0.004441 0.000300 NO
Maximum Displacement 2.691223 0.001800 NO
RMS Displacement 0.441809 0.001200 NO
Predicted change in Energy=-5.924441D-02
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Stoichiometry C42H40N4
Framework group C1[X(C42H40N4)]
Deg. of freedom 252
Full point group C1 NOp 1
Largest Abelian subgroup C1 NOp 1
Largest concise Abelian subgroup C1 NOp 1
Rotational constants (GHZ): 0.0600091 0.0557330 0.0314234
Standard basis: 6-31G(d) (6D, 7F)
There are 770 symmetry adapted cartesian basis functions of A symmetry.
There are 770 symmetry adapted basis functions of A symmetry.
770 basis functions, 1448 primitive gaussians, 770 cartesian basis functions
160 alpha electrons 160 beta electrons
nuclear repulsion energy 5164.8642241148 Hartrees.
NAtoms= 86 NActive= 86 NUniq= 86 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=T Big=T
Integral buffers will be 131072 words long.
Raffenetti 2 integral format.
Two-electron integral symmetry is turned on.
Nuclear repulsion after empirical dispersion term = 5164.6489152026 Hartrees.
One-electron integrals computed using PRISM.
NBasis= 770 RedAO= T EigKep= 3.78D-04 NBF= 770
NBsUse= 770 1.00D-06 EigRej= -1.00D+00 NBFU= 770
Initial guess from the checkpoint file: "M.chk"
B after Tr= -0.000000 0.000000 0.000000
Rot= 0.874916 0.005667 -0.003155 0.484230 Ang= 57.93 deg.
ExpMin= 1.61D-01 ExpMax= 4.17D+03 ExpMxC= 6.27D+02 IAcc=2 IRadAn= 4 AccDes= 0.00D+00
Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess.
HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14
ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000
FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 2001
NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T
wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0
NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0
Petite list used in FoFCou.
Requested convergence on RMS density matrix=1.00D-08 within 128 cycles.
Requested convergence on MAX density matrix=1.00D-06.
Requested convergence on energy=1.00D-06.
No special actions if energy rises.
Integral accuracy reduced to 1.0D-05 until final iterations.
Initial convergence to 1.0D-05 achieved. Increase integral accuracy.
SCF Done: E(RB3LYP) = -1843.71931274 A.U. after 15 cycles
NFock= 15 Conv=0.85D-08 -V/T= 2.0099
Calling FoFJK, ICntrl= 2127 FMM=T ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0.
***** Axes restored to original set *****
Cartesian Forces: Max 0.022098469 RMS 0.005069109
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Berny optimization.
Using GDIIS optimizer.
FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4.
Internal Forces: Max 0.051363663 RMS 0.007210885
Search for a local minimum.
Step number 3 out of a maximum of 482
All quantities printed in internal units (Hartrees-Bohrs-Radians)
Swapping is turned off.
Update second derivatives using D2CorX and points 2 3
DE= -9.51D-03 DEPred=-5.92D-02 R= 1.61D-01
Trust test= 1.61D-01 RLast= 2.52D+00 DXMaxT set to 5.05D-01
ITU= 0 1 0
DIIS coeff's: 0.51786 1.54873 -1.06660
Cosine: 0.984 > 0.840
Length: 0.877
GDIIS step was calculated using 3 of the last 3 vectors.
Maximum step size ( 0.505) exceeded in Quadratic search.
-- Step size scaled by 0.747
Iteration 1 RMS(Cart)= 0.26589040 RMS(Int)= 0.06220017
Iteration 2 RMS(Cart)= 0.14264161 RMS(Int)= 0.03005785
Iteration 3 RMS(Cart)= 0.08464143 RMS(Int)= 0.00692374
Iteration 4 RMS(Cart)= 0.02486161 RMS(Int)= 0.00322480
Iteration 5 RMS(Cart)= 0.00054719 RMS(Int)= 0.00322060
Iteration 6 RMS(Cart)= 0.00000879 RMS(Int)= 0.00322060
Iteration 7 RMS(Cart)= 0.00000020 RMS(Int)= 0.00322060
Item Value Threshold Converged?
Maximum Force 0.051364 0.000450 NO
RMS Force 0.007211 0.000300 NO
Maximum Displacement 2.463131 0.001800 NO
RMS Displacement 0.448612 0.001200 NO
Predicted change in Energy=-8.027861D-02
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Stoichiometry C42H40N4
Framework group C1[X(C42H40N4)]
Deg. of freedom 252
Full point group C1 NOp 1
Largest Abelian subgroup C1 NOp 1
Largest concise Abelian subgroup C1 NOp 1
Rotational constants (GHZ): 0.0639418 0.0549826 0.0325557
Standard basis: 6-31G(d) (6D, 7F)
There are 770 symmetry adapted cartesian basis functions of A symmetry.
There are 770 symmetry adapted basis functions of A symmetry.
770 basis functions, 1448 primitive gaussians, 770 cartesian basis functions
160 alpha electrons 160 beta electrons
nuclear repulsion energy 5205.0707398273 Hartrees.
NAtoms= 86 NActive= 86 NUniq= 86 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=T Big=T
Integral buffers will be 131072 words long.
Raffenetti 2 integral format.
Two-electron integral symmetry is turned on.
Nuclear repulsion after empirical dispersion term = 5204.8553434039 Hartrees.
One-electron integrals computed using PRISM.
NBasis= 770 RedAO= T EigKep= 3.93D-04 NBF= 770
NBsUse= 770 1.00D-06 EigRej= -1.00D+00 NBFU= 770
Initial guess from the checkpoint file: "M.chk"
B after Tr= 0.000000 -0.000000 -0.000000
Rot= 0.996426 0.004590 -0.004529 0.084226 Ang= 9.69 deg.
ExpMin= 1.61D-01 ExpMax= 4.17D+03 ExpMxC= 6.27D+02 IAcc=2 IRadAn= 4 AccDes= 0.00D+00
Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess.
HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14
ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000
FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 2001
NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T
wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0
NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0
Petite list used in FoFCou.
Requested convergence on RMS density matrix=1.00D-08 within 128 cycles.
Requested convergence on MAX density matrix=1.00D-06.
Requested convergence on energy=1.00D-06.
No special actions if energy rises.
Integral accuracy reduced to 1.0D-05 until final iterations.
Initial convergence to 1.0D-05 achieved. Increase integral accuracy.
SCF Done: E(RB3LYP) = -1843.72179907 A.U. after 15 cycles
NFock= 15 Conv=0.71D-08 -V/T= 2.0096
Calling FoFJK, ICntrl= 2127 FMM=T ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0.
***** Axes restored to original set *****
-------------------------------------------------------------------
Cartesian Forces: Max 0.014573507 RMS 0.004863490
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Berny optimization.
Using GDIIS optimizer.
FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4.
Internal Forces: Max 0.035124211 RMS 0.005710153
Search for a local minimum.
Step number 4 out of a maximum of 482
All quantities printed in internal units (Hartrees-Bohrs-Radians)
Swapping is turned off.
Update second derivatives using D2CorX and points 3 4
DE= -2.49D-03 DEPred=-8.03D-02 R= 3.10D-02
Trust test= 3.10D-02 RLast= 2.42D+00 DXMaxT set to 2.52D-01
ITU= -1 0 1 0
Item Value Threshold Converged?
Maximum Force 0.035124 0.000450 NO
RMS Force 0.005710 0.000300 NO
Maximum Displacement 1.451544 0.001800 NO
RMS Displacement 0.341955 0.001200 NO
Predicted change in Energy=-4.035194D-02
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Stoichiometry C42H40N4
Framework group C1[X(C42H40N4)]
Deg. of freedom 252
Full point group C1 NOp 1
Largest Abelian subgroup C1 NOp 1
Largest concise Abelian subgroup C1 NOp 1
Rotational constants (GHZ): 0.0621174 0.0553716 0.0322692
Standard basis: 6-31G(d) (6D, 7F)
There are 770 symmetry adapted cartesian basis functions of A symmetry.
There are 770 symmetry adapted basis functions of A symmetry.
770 basis functions, 1448 primitive gaussians, 770 cartesian basis functions
160 alpha electrons 160 beta electrons
nuclear repulsion energy 5189.0776279504 Hartrees.
NAtoms= 86 NActive= 86 NUniq= 86 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=T Big=T
Integral buffers will be 131072 words long.
Raffenetti 2 integral format.
Two-electron integral symmetry is turned on.
Nuclear repulsion after empirical dispersion term = 5188.8625441108 Hartrees.
One-electron integrals computed using PRISM.
NBasis= 770 RedAO= T EigKep= 3.80D-04 NBF= 770
NBsUse= 770 1.00D-06 EigRej= -1.00D+00 NBFU= 770
Initial guess from the checkpoint file: "M.chk"
B after Tr= 0.000000 0.000000 -0.000000
Rot= 0.960465 -0.003951 0.002332 -0.278363 Ang= -32.33 deg.
ExpMin= 1.61D-01 ExpMax= 4.17D+03 ExpMxC= 6.27D+02 IAcc=2 IRadAn= 4 AccDes= 0.00D+00
Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess.
HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14
ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000
FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 2001
NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T
wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0
NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0
Petite list used in FoFCou.
Requested convergence on RMS density matrix=1.00D-08 within 128 cycles.
Requested convergence on MAX density matrix=1.00D-06.
Requested convergence on energy=1.00D-06.
No special actions if energy rises.
Integral accuracy reduced to 1.0D-05 until final iterations.
Initial convergence to 1.0D-05 achieved. Increase integral accuracy.
SCF Done: E(RB3LYP) = -1843.75747218 A.U. after 14 cycles
NFock= 14 Conv=0.74D-08 -V/T= 2.0098
Calling FoFJK, ICntrl= 2127 FMM=T ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0.
***** Axes restored to original set *****
Cartesian Forces: Max 0.010715616 RMS 0.002660143
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Berny optimization.
Using GDIIS optimizer.
FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4.
Internal Forces: Max 0.010908922 RMS 0.002121964
Search for a local minimum.
Step number 5 out of a maximum of 482
All quantities printed in internal units (Hartrees-Bohrs-Radians)
Swapping is turned off.
Update second derivatives using D2CorX and points 4 5
DE= -3.57D-02 DEPred=-4.04D-02 R= 8.84D-01
TightC=F SS= 1.41D+00 RLast= 1.51D+00 DXNew= 4.2426D-01 4.5364D+00
Trust test= 8.84D-01 RLast= 1.51D+00 DXMaxT set to 4.24D-01
ITU= 1 -1 0 1 0
DIIS coeff's: 0.79613 -0.11041 0.08955 0.49007 -0.26534
Cosine: 0.964 > 0.670
Length: 0.708
GDIIS step was calculated using 5 of the last 5 vectors.
|
|